leyes físicas que realiza el péndulo

11.04.2014 11:14

Ecuación del movimiento

Para escribir la ecuación del movimiento, observaremos la figura adjunta, correspondiente a una posición genérica del péndulo. La flecha azul representa elpeso de la masa pendular. Las flechas en color violeta representan las componentes del peso en las direcciones tangencial y normal a la trayectoria.

Aplicando la Segunda ley de Newton en la dirección del movimiento, tenemos

F_\text{t} = - mg\sin\theta = ma_\text{t} \,

donde el signo negativo tiene en cuenta que la F_\text{t} tiene dirección opuesta a la del desplazamiento angular positivo (hacia la derecha, en la figura). Considerando la relación existente entre la aceleración tangencial y la aceleración angular

 a_\text{t} = \ell \ddot\theta\ \,

obtenemos finalmente la ecuacion diferencial del movimiento plano del pendulo simple

 \ell \ddot\theta\ + g\sin\theta = 0\,

Período de oscilación

Factor de amplificación del período de un péndulo, para una amplitud angular cualquiera. Para ángulos pequeños el factor vale aproximadamente 1 pero tiende a infinito para ángulos cercanos a π (180º).

El astrónomo y físico italiano Galileo Galilei, observó que el periodo de oscilación es independiente de la amplietud, al menos para pequeñas oscilaciones. En cambio, éste depende de la longitud del hilo. El período de la oscilación de un péndulo simple restringido a oscilaciones de pequeña amplitud puede aproximarse por:

T \approx 2 \pi \sqrt{\ell\over g}

Para oscilaciones mayores la relación exacta para el período no es constante con la amplitud e involucra integrales elipticas e primera especie:

T = 4\sqrt{\ell\over g}K\left(\sin \frac{\varphi_0}{2}\right) 
= 4\sqrt{\ell\over g} \int_0^{\frac{\pi}{2}}
\frac{d\theta}{\sqrt{1-\sin^2 \frac{\varphi_0}{2}\sin^2 \theta}}

Donde φ0 es la amplitud angular máxima. La ecuación anterior puede desarrollarse en serie de Taylor obteniéndose una expresión más útil:

T = 2 \pi \sqrt{\ell\over g}
\left[1+ \left(\frac{1}{2}\right)^2\sin^2 \frac{\varphi_0}{2}+
\left(\frac{1\cdot 3}{2\cdot 4}\right)^2\sin^4 \frac{\varphi_0}{2}+
\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2\sin^6 \frac{\varphi_0}{2}+ \dots \right]

Solución de la ecuación de movimiento

Para pequeñas oscilaciones la amplitud es casi senoidal, para amplitudes más grandes la oscilación ya no es senoidal. La figura muestra un movimiento de gran amplitud \phi_0 = 0,999\pi (negro), junto a un movimiento de pequeña amplitud \phi_0 = 0,25\pi (gris).

Para amplitudes pequeñas, la oscilación puede aproximarse como combinación lineal de funciones trigonométricas. Para amplitudes grandes puede probarse el ángulo puede expresarse como combinación lineal de funciones elipticas de Jacobi. Para ver esto basta tener en cuenta que la energía constituye una integral de movimiento y usar el método de la cuadratura para integrar la ecuación de movimiento:

t = \sqrt{\frac{m}{2}} \int_0^{\phi(t)} \frac{ld\theta}{\sqrt{E-U(\phi)}} = = \sqrt{\frac{l}{2g}} \int_0^{\phi(t)} \frac{d\theta}{\sqrt{\cos\theta -\cos\phi_0}} =
\sqrt{\frac{l}{4g}} \int_0^{\phi(t)} \frac{d\theta}{\sqrt{\sin^2\frac{\phi_0}{2}-\sin^2\frac{\theta}{2}}}

Donde, en la última expresión se ha usado la fórmula del ángulo doble y donde además:

E = -mgl \cos \phi_0\;, es la energía, que está relacionada con la máxima amplitud \phi_0\;.
U(\phi) = -mgl \cos \phi\;, es la energía potencial energía potencial.

Realizando en variable \sin\xi = \frac{\sin\frac{\theta}{2}}{\sin\frac{\phi_0}{2}}\;, la solución de las ecuaciones del movimiento puede expresarse como:

t = 
\sqrt{\frac{l}{g}} \int_0^{\Phi} \frac{d\xi}{\sqrt{1-\sin^2\frac{\phi_0}{2}\sin^2\xi}}
\Rightarrow \qquad \phi(t) = 2\arcsin \left(\mbox{sn}\ \sqrt{\frac{g}{l}}t \cdot \sin{\frac{\phi_0}{2}}\right)

Donde:

\mbox{sn}(t)\;, es la funcion eliptica de Jacobi tipo seno.
\sin\Phi = \frac{\sin\frac{\phi(t)}{2}}{\sin\frac{\phi_0}{2}}

El lagrangiano del sistema es \mathcal{L} = T - V = \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos{\theta}, donde \theta es el ángulo que forma la cuerda del péndulo a lo largo de sus oscilaciones (es la variable), y l es la longitud de la cuerda (es la ligadura). Si se aplican las ecuaciones de Lagrange se llega a la ecuación final del movimiento: l^2\ddot{\theta} + gl\sin{\theta} = 0. Es decir, la masa no influye en el movimiento de un péndulo.

Péndulo esférico

Péndulo de Foucault en el hemisferio sur.

Un péndulo esférico es un sistema con dos grados de libertad. El movimiento está confinado a la una porción de superficie esférica (de radio l) comprendida entre dos paralelos. Existen dosintegrales de movimiento, la energía E y la componente del momento angularparalela al eje vertical Mz. La funcion lagrangiana viene dada por:

L = \frac{1}{2}ml^2(\dot{\theta}^2+ \dot{\phi}^2\sin^2\theta)+mgl\cos\theta

Donde \phi es el ángulo polar y \theta es el ángulo que forma el hilo o barra del péndulo con la vertical. Las ecuaciones de movimiento, obtenidas introduciendo el lagrangiano anterior en las ecuaciones de Euler-Lagrange son:

\begin{matrix}
\cfrac{d}{dt}\cfrac{\part L}{\part\dot\theta} - \cfrac{\part L}{\part\theta}=0 & \Rightarrow &
l\ddot\theta - l\dot{\phi}^2\sin\theta\cos\theta + g \sin\theta = 0\\ \\
\cfrac{d}{dt}\cfrac{\part L}{\part\dot\phi} - \cfrac{\part L}{\part\phi}=0 & \Rightarrow 
& \cfrac{d}{dt}(ml^2\dot{\phi}\sin^2\theta) = 0 \end{matrix}

La segunda ecuación expresa la constancia de la componente Z del momento angular y por tanto lleva a la relación entre la velocidad de giro polar y el momento angular y por tanto a reescribir la lagrangiana como:

\dot\phi = \frac{M_z}{ml^2\sin^2\theta} \Rightarrow \qquad
L = K(\dot\theta)+ U_{ef}(\theta) = \frac{1}{2}ml^2\dot{\theta}^2 + 
\frac{M_z^2}{2ml^2\sin^2\theta}-mgl\cos\theta

Y el problema queda reducido a un problema unidimensional.

Período

El movimiento de un péndulo esférico en general no resulta periódico, ya que es la combinación de dos movimientos periódicos de períodos generalmente incomensurables. Sin embargo el movimiento resulta cuasiperiódico, lo cual significa que fijado una posición y una velocidad previas del movimiento existe un tiempo T tal que el movimiento pasará a una distancia tan pequeña como se desee de esa posición con una velocidad tan parecida como se quiera, pero sin repetirse exactamente. Dada que la región de movimiento además resulta compacta, el conjunto de puntos la trayectoria de un péndulo esférico constituye un conjunto denso sobre una área esférica comprendida entre dos casquetes esfericos.

Solución de la ecuación de movimiento

Las ecuaciones de movimiento pueden expresarse en términos de integrales elípticas de primera especie y tercera especie:

t = \sqrt\frac{ml^2}{2} \int \frac{d\theta}{\sqrt{E-U_{ef}(\theta)}} \qquad 
\phi = \frac{M_z}{l\sqrt{2m}} \int \frac{d\theta}{\sin^2\theta\sqrt{E-U_{ef}(\theta)}}

 

rescatado de : https://es.wikipedia.org/wiki/P%C3%A9ndulo